
 UniGrid

1

Whitepaper

Unigrid

 UniGrid

2

This article gives a more advanced example on how to use the UniGrid control which is a listing control used in

the user interface of Kentico.

Configuration for unigrid.

Property Name Description Sample Value

Columns Specifies the columns that should be loaded from the data

source specified in the DataSource property.

By default, the values of the first column are passed as the

actionArgument parameter of the OnAction event handler.

This can be overridden in the definition by specifying a

column name in the commandargument attribute of

individual <action> elements.

CompleteWhereConditi

on

Can be used to get the used WHERE clause including any

modifications applied by the filter.

DataSource Can be used to gets or set an object (DataSet or DataTable)

containing the data to be displayed by the UniGrid control.

DelayedReload If enabled, data will not be loaded automatically during the

Load event of the page and the ReloadData() method must

be called manually instead.

FilterDirectoryPath Path to the control (.ascx file) that should be used instead of

the default filter. The default relative path is

~/CMSAdminControls/UI/UniGrid/Filters/.

FilteredZeroRowsText Text to be shown when no rows are displayed after the filter

is applied.

FilterLimit Determines the minimum amount of rows that must be

displayed in the UniGrid before a filter is shown. The default

value is read from the CMSDefaultListingFilterLimit

web.config key.

GridName Contains the name of an external XML file that defines the

structure and behaviour of the UniGrid control. For more

information, please refer to the UniGrid definition topic.

GridView Can be used to access the GridView control encapsulated by

the UniGrid.

HideControlForZeroRo

ws

Indicates whether the control should be hidden when no rows

are loaded. The control is not hidden if the filter causes zero

http://devnet.kentico.com/docs/6_0/controls/unigrid_definition.htm

 UniGrid

3

rows to be displayed.

ImageDirectoryPath Path to the directory that contains images used by the control.

The default value is

~/App_Themes/Default/Images/Design/Controls/UniGrid/Act

ions.

NamedColumns Gets a dictionary mapping custom names to

DataControlField objects that represent the columns of the

UniGrid.

The names of columns can be specified in the UniGrid's

definition through the name attribute of individual

<column> elements.

This can be used to access the grid's columns in your code.

For example:

[C#]

UniGrid.NamedColumns["column1"].Visible = false;

When executed, this code would hide the column named

column1.

ObjectType Can be used to define the data class of the objects that should

be loaded as the data source and displayed by the UniGrid

control. A list of all available data classes and related

information can be found in the CMS_Class database table.

Alternatively, the same can be defined in the UniGrid's

definition through the <objecttype> element as described in

 UniGrid

4

the following topic.

Please note that this approach is not supported for classes

representing document types (i.e. those whose value in the

ClassIsDocumentType column is 1). In these cases, you can

load the required data by specifying an appropriate query

through the Query property.

OrderBy The ORDER BY clause used to determine how the UniGrid

rows are sorted when the page is first loaded.

Pager Can be used to access the UniGridPager control used for

paging.

PageSize This setting can be used to override the default values offered

by the page size selection drop-down list. Values must be

separated by commas.

The ##ALL## macro can be used as a value to indicate that

all rows should be displayed.

The default value is “25,50,100,##ALL##”.

"10,20,##ALL##"

Query Can be used to specify the name of the query that should be

used to retrieve data from the Kentico CMS database to be

displayed by the UniGrid control. The name is entered in

format <class name>.<query name>.

Alternatively, the same can be defined in the definition

through the <query> element as described in the following

topic.

"cms.user.selectallvie

w"

SelectedItems Gets (as an ArrayList) or sets the currently selected rows

from the UniGrid.

ShowActionsMenu Indicates whether the header of the actions column should

contain a context menu that provides the option to export the

data displayed in the grid into various other formats (Excel,

CSV or XML).

ShowObjectMenu Indicates if an action providing a context menu with object

actions should automatically be added to the displayed grid.

 UniGrid

5

This requires the data source of the UniGrid to be an object

type, specified either through the <objecttype> element or

the ObjectType property.

This menu provides options that can be used to Export,

Backup, Restore or Destroy individual listed objects. Some

types of objects may not have all menu options available.

This action is not added if there is another action specified

that has a contextmenu attribute or in cases where there are

no actions at all defined for the grid.

The default value is true.

SortDirect The ORDER BY clause reflecting the current row sorting

being used by the UniGrid.

TopN Specifies the maximum amount of rows that should be

selected.

WhereCondition Can be used to get the used WHERE clause without

modifications applied by the filter.

ZeroRowsText Text to be shown when the control is hidden by the

HideControlForZeroRows property.

The following events of the UniGrid control are available:

Event Name Description

OnAction

Occurs when one of the actions of the control is used. The name of the given

action is passed as a parameter to the handlers of the event. An example of how

it is used can be found in the tutorial found in the Getting started topic.

OnExternalDataBound Occurs after data is loaded. It is used to implement a custom design or

functionality for UniGrid columns, including the action column. An example of

how it is used can be found in the Implementing custom functionality topic.

http://devnet.kentico.com/docs/6_0/controls/unigrid_getting_started.htm
http://devnet.kentico.com/docs/6_0/controls/unigrid_implementing_custom_functionality.htm

 UniGrid

6

OnBeforeDataReload This event can be used to perform any actions before the ReloadData() method is

executed.

OnAfterDataReload This event can be used to perform any actions after the ReloadData() method is

executed.

It may come in handy when building custom functionality for your site. We will define a basic UniGrid; change

dynamically the editing (deleting) button image and finally we will create a custom column for editing the

object.

The UniGrid is used to display and to edit the data across the user interface. Everywhere in the user interface

you see a table with editing buttons you can be pretty sure, that this table is generated by a UniGrid. The

UniGrid needs basically two inputs. The data you want to display and the UniGrid definition. The UniGrid

definition can be defined either directly in the designer file or in an XML file. The designer file approach is

recommended and that’s why we will use it in our example.

 At first let’s create a UniGrid for testing purposes. You can place it for example into a new custom web part

created according to developer’s guide. At first you need to register the user control.

<%@ Register src="~/CMSAdminControls/UI/UniGrid/UniGrid.ascx"

tagname="UniGrid" tagprefix="cms" %>

 In this example we will be using the users as testing data. So let’s declare a userGrid UniGrid:

<cms:UniGrid ID="userGrid" runat="server"/>

 This simple code places a Unigrid on your custom web part. The UniGrid can be populated in three different

ways:

A. You need to specify the query name in the UniGrid definition if you want to populate the UniGrid with a

query. You can create the query in the CMSSiteManager / Development / Document types / <select a

document type> / Queries section. You can also create a new document type which will be only a

container for custom queries without any custom fields.

<cms:UniGrid ID="userGrid" runat="server" Query="cms.user.selectall"/>

B. If you want to use the object approach, you need to define the edited object with the ObjectType

attribute of the UniGrid:

<cms:UniGrid ID="userGrid" runat="server" ObjectType="cms.user" />

C. The last approach is to populate the UniGrid in the CodeBehind file of your web part. This approach can

be used for example if you need to add additional data to the displayed dataset:

 UniGrid

7

userGrid.DataSource = CMS.SiteProvider.UserInfoProvider.GetAllUsers();

Now let’s check how to define the layout and functionality of a UniGrid. The first approach would be to use an

XML file:

<cms:UniGrid ID="userGrid" runat="server"

GridName="YourConfigurationFile.xml" />

In this case needs the file to be located in the same directory as the web part itself otherwise you need to specify

the path to the file (the tilde sign is supported). There are a lot of examples through the system of such a setup.

For example this approach is used in the BadWords module in the file

CMSModules\BadWords\BadWords_List.aspx. You can check it out if you would like to use this approach.

The next step in our example is to populate the UniGrid by placing the code from the data population approach

C into your web part code behind file into the Page_Load method:

protected void Page_Load(object sender, EventArgs e)

{

userGrid.DataSource = CMS.MembershipProvider.UserInfoProvider.GetAllUsers();

}

Let’s say you want only to display two columns, the UserName and the UserID. We populate the data

programmatically, so you can use the UniGrid definition directly in the designer file. So let’s add the

mentioned columns to the GridColumns section of the UniGrid definition. Please add the columns so your code

will look the following way:

<%@ Register src="~/CMSAdminControls/UI/UniGrid/UniGrid.ascx"

tagname="UniGrid" tagprefix="cms" %>

<%@ Register Namespace="CMS.UIControls.UniGridConfig" TagPrefix="ug"

Assembly="CMS.UIControls" %>

<cms:UniGrid ID="userGrid" runat="server" >

<GridColumns>

<ug:Column Source="UserName" Caption="User name" Wrap="false">

</ug:Column>

<ug:Column Source="UserID" Caption="User ID" Wrap="false">

</ug:Column>

</GridColumns>

</cms:UniGrid>

You can see that we had to add a new assembly so we can define the UniGrid actions. Your UniGrid should

now list all the users if you access the page where your web part is placed.

In this example we want to be able to delete a selected entry, so we need to add a new UniGrid action. The first

column in the dataset used as an identifier of the edited entry for all UniGrid actions if not specified otherwise

by the commandargument property on the Action definition (please see the referenced documentation at the end

for details). In our case it’s the UserID. Additionally to distinguish between the actions which are called you

 UniGrid

8

need to specify the Name property (this is useful if you have multiple actions defined). This value will be later

used in the switch statement. By adding the GridActions section to the designer file code will look something

like this:

<%@ Register src="~/CMSAdminControls/UI/UniGrid/UniGrid.ascx"

tagname="UniGrid" tagprefix="cms" %>

<%@ Register Namespace="CMS.UIControls.UniGridConfig" TagPrefix="ug"

Assembly="CMS.UIControls" %>

<cms:UniGrid ID="userGrid" runat="server">

<GridActions>

<ug:Action Name="deleteaction" Caption="$General.Delete$"

Icon="Delete.png" />

</GridActions>

<GridColumns>

<ug:Column Source="UserName" Caption="User name" Wrap="false">

</ug:Column>

<ug:Column Source="UserID" Caption="User ID" Wrap="false">

</ug:Column>

</GridColumns>

</cms:UniGrid>

The Source property of within the Column tag defines which columns are used from the supplied dataset. Our

next step will be to execute our own code on this action. At first you need to register the OnAction event in the

code behind file in the Page_Load method:

userGrid.OnAction += OnAction;

Now we have registered our new OnAction method. The method itself can look the following way:

private void OnAction(string actionName, object actionArgument)

{

switch (actionName.ToLower())

{

case "deleteaction":

// Code for deleting the user by the actionArgument which is the passed

UserID

UserInfoProvider.DeleteUser(ValidationHelper.GetInteger(actionArgument,

0));

// Repopulate the UniGrid with the new data

userGrid.DataSource = (CMS.SiteProvider.UserInfoProvider.GetAllUsers());

break;

}

}

You have probably noticed that the case “deleteaction” corresponds with the Name of the action in the markup

file. In our example the UserID is used to delete the given user from the system. The actionArgument variable

holds the UserID. If you check your page now, you should see a new delete button for each UniGrid entry. You

 UniGrid

9

can try to delete some testing user from the system.

An expansion of our example could be to change the image used for the button. This could be used for example

because you want to display different buttons for deleting specific users. Let’s say you want to display a

different image if the user is a global administrator. In that case you will need to dynamically change the button

image during the creation of the UniGrid. For this you need to register the OnExternalDataBound event, where

you will dynamically check the UserInfo object and change the icon according to this value. Please add this

code into your Page Load method to register a new event:

userGrid.OnExternalDataBound += new

CMS.UIControls.OnExternalDataBoundEventHandler(userGrid_OnExternalDataBoun

d);

The corresponding method will have to check for the action type and change the passed down ImageButton

control to use a different image, if the user is a global administrator. One approach to get the information, if the

User is a global administrator is to use our API. The more efficient approach is to check the data you already

have available:

protected object userGrid_OnExternalDataBound(object sender, string

sourceName, object parameter)

{

string id = ((System.Data.DataRowView)parameter)["UserID"].ToString();

}

In our dataset we retrieved all the columns for the UserInfo object, so we can use the following code to check if

the user is a global administrator:

string isAdmin =

((System.Data.DataRowView)parameter)["UserIsGlobalAdministrator"].ToString

();

Now let’s use this information to achieve our desired functionality. We need to get a different image URL if the

user is an administrator and we need to modify the sender object. In this case this will be an ImageButton

control:

protected object userGrid_OnExternalDataBound(object sender, string

sourceName, object parameter)

{

// User ID is used as actions parameter editedItemId

string editedItemId = "";

bool isAdmin = false;

object param = null;

if (parameter is System.Web.UI.WebControls.GridViewRow)

{

param = ((System.Web.UI.WebControls.GridViewRow)parameter).DataItem;

}

 UniGrid

10

editedItemId =

((System.Data.DataRowView)(param)).Row["UserId"].ToString();

isAdmin =

ValidationHelper.GetBoolean(((System.Data.DataRowView)(param)).Row["UserIs

GlobalAdministrator"], false);

string sImageUrl =

GetImageUrl("Design/Controls/UniGrid/Actions/Delete.png");

if (isAdmin)

{

sImageUrl = GetImageUrl("Design/Controls/UniGrid/Actions/Edit.png");

}

switch (sourceName)

{

case "deleteaction":

ImageButton btn = ((ImageButton)sender);

btn.ImageUrl = sImageUrl;

return btn;

}

return parameter;

}

Additionally you need to register the ExternalSourceName for this deleteaction from the switch statement in the

upper code the following way:

<GridActions>

<ug:Action Name="deleteaction" ExternalSourceName="deleteaction"

Caption="$General.Delete$" Icon="Delete.png" />

</GridActions>

If you now load the UniGrid then you should get different icons for users which are global administrators.

The last example will be how to display the editing buttons also in the last column. By default are the buttons

displayed in the first column, but in some cases this isn’t desired. To achieve this we will have to change the

UniGrid definition to include an additional column for our actions. To be able to get all the data from the row

we will use the ##ALL## macro which is a substitute for all columns in our dataset. The ExternalSourceName

is different since we need to create a different control for the action processing:

<%@ Register src="~/CMSAdminControls/UI/UniGrid/UniGrid.ascx"

tagname="UniGrid" tagprefix="cms" %>

<%@ Register Namespace="CMS.UIControls.UniGridConfig" TagPrefix="ug"

Assembly="CMS.UIControls" %>

<cms:UniGrid ID="userGrid" runat="server">

<GridActions>

<ug:Action Name="deleteaction" ExternalSourceName="deleteaction"

Caption="$General.Delete$" Icon="Delete.png" />

 UniGrid

11

</GridActions>

<GridColumns>

<ug:Column Source="UserName" Caption="User name" Wrap="false">

</ug:Column>

<ug:Column Source="UserID" Caption="User ID" Wrap="false">

</ug:Column>

<ug:Column source="##ALL##" ExternalSourceName="deleteactioncolumn"

caption="Additional Actions" wrap="false">

</ug:Column>

</GridColumns>

</cms:UniGrid>

Now let’s add a button to this binding event with a custom click event handler. To simulate an action button in a

column we will need to define a JavaScript function for the click event. Since we still want to display the first

column for deleting the user, we will need to modify the OnExternalDataBound handling method to return a

clickable image if the column is used as an action. We will use the different ExternalSourceName to perform

the additional processing. Also, the parameter object id of a different type so we will have to check its type to

process it correctly. The JavaScript function name for our clickable image needs to be in the following form:

UG_Cmd_<UniGrid control ID>

The parameters of the method are the action name and the ID to identify the object in the UniGrid which is

edited (deleted by your code). In our case it can be the UserID which is assigned to the variable editedItemId:

btnImage.Attributes["onclick"] = String.Format("return

UG_Cmd_{0}('deleteAction', {1});", userGrid.ClientID,

ScriptHelper.GetString(editedItemId));

When putting all those things together, here is the complete code of the

OnExternalDataBound method:

protected object userGrid_OnExternalDataBound(object sender, string

sourceName, object parameter)

{

// User ID is used as actions parameter editedItemId

string editedItemId = "";

bool isAdmin = false;

object param = null;

if (parameter is System.Web.UI.WebControls.GridViewRow)

{

param = ((System.Web.UI.WebControls.GridViewRow)parameter).DataItem;

}

else if(parameter is System.Data.DataRowView){

param = parameter;

}

editedItemId =

 UniGrid

12

((System.Data.DataRowView)(param)).Row["UserId"].ToString();

isAdmin =

ValidationHelper.GetBoolean(((System.Data.DataRowView)(param)).Row["UserIs

GlobalAdministrator"], false);

string sImageUrl =

GetImageUrl("Design/Controls/UniGrid/Actions/Delete.png");

if (isAdmin)

{

sImageUrl = GetImageUrl("Design/Controls/UniGrid/Actions/Edit.png");

}

switch (sourceName)

{

case "deleteaction":

ImageButton btn = ((ImageButton)sender);

btn.ImageUrl = sImageUrl;

return btn;

case "deleteactioncolumn":

Image btnImage = new Image()

{

ID = "deleteaction",

ImageUrl = sImageUrl,

Width = 16,

Height = 16

};

btnImage.Attributes["onclick"] = String.Format("return

UG_Cmd_{0}'{deleteAction}', {1});", userGrid.ClientID,

ScriptHelper.GetString(editedItemId));

return btnImage;

}

return parameter;

}

Please use apostrophes instead of ' in the code.

Tip #1: If you want to add multiple controls use a Panel control to encapsulate them and return the Panel

control, because only one control can be returned.

Tip #2: You can return also a string (for example custom HTML code), not only controls.

Here is the final table generated by the UniGrid:

 UniGrid

13

Uni-Grid Defination (XML Configuration).

Many configuration options that determine the behavior, design and content of the UniGrid control must be

specifically defined. This can either be done either in an external XML configuration file, which is then

assigned to the control through its GridName property, or directly within the definition of the control in the

ASPX markup of the page or user control where the UniGrid is placed.

When using an external XML file, it must be organized according to the structure shown below (some elements

are optional):

<?xml version="1.0" encoding="utf-8" ?>
<grid>

 <actions>
 <action />
 <separator />
 ...
 </actions>

 <columns>
 <column>
 <tooltip />
 <filter />
 ...
 </column>
 ...
 </columns>

 <objecttype />

 <query>

 UniGrid

14

 <parameter />
 ...
 </query>

 <pager>
 <key name="DefaultPageSize" value="10" />
 ...
 </pager>

 <options>
 <key name="DisplayFilter" value="true" />
 ...
 </options>

</grid>

Please note

If you use an external XML configuration file to specify the UniGrid's

definition, the names of elements and their attributes used must be written in

lower case to be recognized correctly, since it is case sensitive.

To define the UniGrid directly in the ASPX markup, it is first necessary to register the following namespace at

the start of the code (in addition to the UniGrid control):

<%@ Register Namespace="CMS.UIControls.UniGridConfig" TagPrefix="ug" Assembly="CMS.UIControls" %>

Then you can simply add elements under the control according to the following structure:

<cms:UniGrid runat="server" ID="UniGrid" ... >

 <GridActions>
 <ug:Action />

 UniGrid

15

 <ug:ActionSeparator />
 ...
 </GridActions>

 <GridColumns>
 <ug:Column>
 <Tooltip />
 <Filter />
 ...
 </ug:Column>
 ...
 </GridColumns>

 <PagerConfig DisplayPager="true" ... />

 <GridOptions DisplayFilter="true" ... />

</cms:UniGrid>

When using this approach, the data source of the control must be specified directly through the UniGrid's

properties (Query, ObjectType or DataSource). An advantage of this option is that you may use the

IntelliSense in Visual Studio to help find the appropriate elements and attributes.

Individual elements that can be defined for the UniGrid and their attributes are described below:

•<actions>

•<columns>

•<objecttype>

•<query>

•<pager>

•<options>

<actions> (<GridActions>):

This element is used to define a column that contains various possible actions (e.g. Edit, Delete, View...)

represented by icons for every row of the UniGrid. Individual actions must be defined by child <action>

elements.

http://devnet.kentico.com/docs/6_0/controls/unigrid_definition.htm#actions
http://devnet.kentico.com/docs/6_0/controls/unigrid_definition.htm#columns
http://devnet.kentico.com/docs/6_0/controls/unigrid_definition.htm#objecttype
http://devnet.kentico.com/docs/6_0/controls/unigrid_definition.htm#query
http://devnet.kentico.com/docs/6_0/controls/unigrid_definition.htm#pager
http://devnet.kentico.com/docs/6_0/controls/unigrid_definition.htm#options

 UniGrid

16

The following attributes of the <actions> element are available:

Attribute Name Description Sample Value

cssclass Specifies the name of a CSS class from the

assigned stylesheet to be used to style the

appearance of the actions column.

"UniGridCustomActionsColumn"

parameters A list of columns separated by semicolons

that will be usable as parameters in the

onclick or menuparameter attributes of

child <action> elements .

"AttachmentGUID;AttachmentFormGUID"

showheader Indicates whether the header of the actions

column should be displayed. The default

value is true.

width Determines the width of the actions column

in the UniGrid.

"30%"

"100px"

This element may contain <action> and <separator> child elements.

<action> (<ug:Action>):

This element is used to define individual actions. The implementation of individual actions is handled during

the OnAction event of the UniGrid control. Any advanced features of individual action buttons, such as

defining when a button should be functional, can be implemented in the handler of the OnExternalDataBound

event.

The following attributes are available:

Attribute

Name
Description Sample Value

caption Specifies the text used as the tooltip of the "$General.Delete$"

 UniGrid

17

image defined in the icon attribute. You

can enter the name of a resource string if

you start and end it with the $ character.

commandargu

ment

The name of the column whose value

should be passed as the actionArgument

parameter of the OnAction event handler.

If not defined, the first column of the data

source will be used.

confirmation The text used in a JavaScript confirmation

for the action. Most commonly used as a

confirmation for delete type actions. You

can enter the name of a resource string if

you start and end it with the $ character.

"$General.ConfirmDelete$"

contextmenu The relative path to a control (.ascx file)

that implements a context menu for the

action. Controls created for this purpose

must inherit from the

CMS.ExtendedControls.CMSContextM

enuControl class.

"~/CMSAdminControls/UI/UniGrid/Controls/Obj

ectMenu.ascx"

externalsource

name

Name of the action that is passed as the

sourceName parameter of the

OnExternalDataBound event handler.

"deletefile"

icon Name of the image that should be used as

the icon of the action. The image must be

located in the folder defined by the

ImageDirectoryPath property of the

UniGrid.

"delete.png"

menuparameter Contains an array of parameters passed to

the control implementing the action's

context menu (the path to this control

must be specified in the contextmenu

attribute). These parameters may be

retrieved in the control's code using the

GetContextMenuParameter JavaScript

function.

The columns defined in the parameters

attribute of the <actions> element may be

entered as parameters using the following

"new Array('cms.site', '{0}')"

 UniGrid

18

expressions:

{0} - first parameter

{1} - second parameter

and so forth.

mousebutton Specifies which mouse button causes the

action's context menu to appear (if a

context menu is enabled via the

contextmenu attribute).

If not defined, both mouse buttons open

the context menu.

"left"

"right"

name Name of the action. This is passed to the

handler of the OnAction event as the

actionName parameter.

"delete"

onclick The JavaScript OnClick function for the

given action. It may use the columns

defined in the parameters attribute of the

<actions> element as parameters, which

can be called by using the following

expressions:

{0} - first parameter

{1} - second parameter

and so forth.

"alert(‘{0}’);"

Action security

modulename This attribute (and the two listed below)

may be specified to leverage the security

model of Kentico CMS to make the action

usable only by a limited group of users.

"cms.ecommerce"

 UniGrid

19

Enter the code name of the module related

to the action.

You can find information about modules,

their permissions and UI elements in the

Site Manager -> Development ->

Modules interface.

permissions Sets the code name of the permission that

users must have to be allowed to perform

the action. The permissions must belong

to the module specified in the

modulename attribute.

"modifyorders"

uielements If specified, users will need to be allowed

to view the given UI element in order to

perform the action. The given user

interface element must belong to the

module specified in the modulename

attribute.

"orders.general"

hideifnotauthor

ized

Indicates if the action should be hidden for

users who are not allowed to perform it (as

defined by the attributes above).

Default object menu action

If your UniGrid control uses an object type data source (specified either

through the <objecttype> definition element or the ObjectType property),

then an action providing a context menu will automatically be added to the

displayed grid.

This menu provides options that can be used to Export, Backup, Restore or

Destroy the listed objects. Some types of objects may not have all menu

options available.

 UniGrid

20

This does not occur if you manually specify another action with a

contextmenu attribute or in cases where there are no actions at all defined

for the grid. You can also disable this action by setting the

ShowObjectMenu property of the UniGrid to false.

<separator> (<ug:ActionSeparator>):

This element is used to define a separator between actions. The following attribute is available for it:

Attribute Name Description Sample Value

text Text to be generated in the Literal control

between actions.

"<span class="
UniGridActionSeparator"

>&nbsp;"

<columns> (<GridColumns>):

This element represents the main section of the UniGrid. The <columns> element itself has no attributes as each

column can have its own settings. Individual columns are defined by child <column> elements.

<column> (<ug:Column>):

This element is used to define columns. Any advanced functionality of the cells in the given column can be

implemented in the handler of the OnExternalDataBound event.

The following attributes are available for it:

 UniGrid

21

Attribute Name Description Sample Value

action Can be used to set the name of an action that will

be performed when the content of this column's

cells is clicked. An action with this name must be

defined for the UniGrid via the name attribute of

an <action> element.

allowsorting Indicates whether the column can be used to sort

the rows of the UniGrid.

caption Specifies the text used as the header for the

column. You can enter the name of a resource

string if you start and end it with the $ character.

"$general.name$"

commandargument The name of the column whose value should be

passed as the actionArgument parameter of the

OnAction event handler when the action

specified via the action attribute is used.

If not defined, the first column of the data source

will be used.

cssclass Specifies the name of a CSS class from the

assigned stylesheet to be used to style the

appearance of the given column.

"UniGridCustomColumn"

externalsourcename Sets a name for the column that will be passed as

the sourceName parameter of the

OnExternalDataBound event handler. Used for

implementing custom functionality in the cells of

the given column.

You can use the following values to call built-in

functions of the UniGrid to format the content of

the column without having to write any code:

•#yesno - can be set for columns with a source

that uses the bit (boolean) data type. The values

will be displayed as Yes (colored green) or No

(colored red).

 UniGrid

22

•#sitename - converts site ID (integer) values

into the appropriate site display name for each

row.

•#sitenameorglobal - converts site ID values

into the appropriate site display name for each

row. If a record is not related to a specific site

(i.e. the site ID is null), then the given cell will

display (global) as its value.

•#countryname - converts ID (integer) values

into the display name of the Country object with

the given ID.

href If a URL is entered here, a link to this URL is

generated around the content of the cells in this

column. Macros {0}, {1}, ... can be used to

access parameters defined by the parameters

attribute.

"~/page.aspx"

icon Name of an image that should be added into the

column cells after the loaded data. The image

must be located in the folder defined by the

ImageDirectoryPath property of the UniGrid.

"edit.png"

istext Indicates whether the content of the column is of

type Text or nText. This is used to generate a

special OrderBy clause of the query, so it must

be set if sorting is enabled for the column.

localize Indicates whether localization should be enabled

for string values in the column.

maxlength Sets the maximum number of characters that can

be displayed in the column's cells. The last 3

characters will be replaced by periods.

name Can be used to set a custom name for the

column, which will be used in the column

dictionary accessible through the

NamedColumns property of the UniGrid

control.

parameters Names of the columns used as parameters of the

URL generated by the Href attribute. Separated

by semicolons.

source Name of the column from the data source of the

UniGrid that is used as the source for the content

of this column. The special macro ##ALL## can

be used to specify all columns.

 UniGrid

23

sort Used to define the column name to be used for

sorting if the ##ALL## macro is used in the

source attribute.

style The style used for the entire column. "padding:10px"

visible Indicates whether the column should be visible.

width Determines the width of the column. "20%"

"200px"

wrap Indicates whether word wrapping is used in the

column.

The column element may contain child <tooltip> and <filter> elements.

<tooltip>:

When this element is added, a tooltip is displayed when the mouse hovers over the content of the cells in this

column. If an icon is present in the cell, the tooltip is displayed over the icon instead of the text. The content of

the tooltip can be defined and configured by the following attributes:

Attribute Name Description Sample Value

encode Indicates whether the output of the tooltip should

be encoded.

externalsourcename Name used in the OnExternalDataBound event

for changing the appearance of the tooltip. This

can be used to create complex tooltips including

images, panels etc.

source Name of the column from the data source of the

UniGrid that is used as the source of the tooltip.

width Determines the width of the tooltip.

<filter>:

 UniGrid

24

When this element is added, the given column will be used in the UniGrid filter. The following attributes are

available to configure the filter:

Attribute Name Description Sample Value

format Can be used to define a custom WHERE clause

format to be generated by the default filter. The

following expressions can be used:

{0} - is resolved into the column name

{1} - is resolved into the operator selected in the

drop-down list of the default filter

{2} - is resolved into the value entered into the

textbox of the default filter

" [{0}] {1} '{2}' "

size Determines the maximum amount of characters

that can be entered into the textbox of the default

filter. Available for Text, Integer and Double

filter types. The default value is 1000.

source Name of the column used in the WHERE clause

generated by the filter.

path Path to the control (.ascx file) that should be used

instead of the default filter for the column. If

filled, the type attribute is ignored. The default

relative path is

~/CMSAdminControls/UI/UniGrid/Filters/.

type The filter type that should be created for the

given column.

"Text"

"Bool"

"Integer"

"Double"

 UniGrid

25

<objecttype>:

 This element can be used to define the data class of the objects that should be loaded as the data source and

displayed by the UniGrid control. A list of all data classes and related information can be found in the

CMS_Class database table. Please note that this approach is not supported for classes representing document

types (those whose value in the ClassIsDocumentType column is 1).

If this element isn't used, a data source must be retrieved by means of the <query> element or assigned through

the UniGrid control's DataSource property before its ReloadData() method is called. Alternatively, the

ObjectType property of the UniGrid control can be used for the same purpose.

The following attributes can be used to define the object type:

Attribute Name Description Sample Value

columns Names of the columns that should be retrieved

separated by commas. If empty, all columns will

be retrieved.

By default, the values of the first column are

passed as the actionArgument parameter of the

OnAction event handler. This can be overridden

for actions by specifying a column name in the

commandargument attribute of individual

<action> elements.

name Code name of the used data class. "cms.user"

<query>:

This element can be used to specify the system query that will retrieve data from the Kentico CMS database to

be displayed by the UniGrid control. If it isn't used, an external data source must be assigned through the

UniGrid control's DataSource property before its ReloadData() method is called. Alternatively, the Query

property of the Unigrid control can be used for the same purpose.

 UniGrid

26

The following attributes can be used to define the query:

Attribute Name Description Sample Value

columns Names of the columns that should be retrieved by

the query separated by commas. If empty, all

database columns will be retrieved.

By default, the values of the first column are

passed as the actionArgument parameter of the

OnAction event handler. This can be overridden

for actions by specifying a column name in the

commandargument attribute of individual

<action> elements.

name Code name of the used system query in format

<class name>.<query name>.

"cms.site.selectsitelist"

The query element may contain <parameter> child elements:

<parameter>:

This element can be used to define the value of a parameter inside the specified query.

The following attributes must be filled to define the parameter:

Attribute Name Description Sample Value

name Name of the parameter. Parameters are placed

into queries using the following syntax:

@<paramater name>

 UniGrid

27

For example, if the specified query looked like

this:

SELECT TOP @customTop FROM CMS_User

Then entering customTop into this attribute

would cause the value of this element to be used

by the query instead of the @customTop

expression.

type The type of the parameter. "String"

"Int"

"Double"

"Bool"

value The value of the parameter.

<pager> (<PagerConfig>):

This element is used to define the behaviour of the UniGrid pager. You can either add the settings as child

<key> elements in the XML configuration file, or as attributes of the <PagerConfig> element when defined

directly in the code. The following are available:

Key name Description Sample Value

DisplayPager Indicates if a pager should be included below

the UniGrid. True by default.

<key name="DisplayPager"

value="false" />

DefaultPageSize Defines the default amount of rows displayed

on one UniGrid page.

<key name="DefaultPageSize"

value="10" />

 UniGrid

28

The value must be one of the options offered by

the page size selection drop-down list. These

values are defined by the PageSizeOptions

key.

PageSizeOptions This setting can be used to override the default

values offered by the page size selection

drop-down list. Values must be separated by

commas.

The ##ALL## macro can be used as a value to

indicate that all rows should be displayed.

The default value is “25,50,100,##ALL##”.

<key name="PageSizeOptions"

value="10,20,##ALL##" />

ShowDirectPageControl Indicates whether a drop-down list used for

direct page selection should be displayed.

<key

name="ShowDirectPageControl"

value="true" />

ShowFirstLastButtons Indicates whether the buttons that link to the

first and last page should be displayed.

<key name="ShowFirstLastButtons"

value="false" />

ShowPageSize Indicates whether the page size selection

drop-down list should be displayed.

<key name="ShowPageSize"

value="false" />

ShowPreviousNextButtons Indicates whether the buttons that link to the

previous and next page page should be

displayed.

<key

name="ShowPreviousNextButtons"

value="false" />

ShowPreviousNextPageGroup Indicates whether the buttons that link to the

next group of page links should be displayed.

<key

name="ShowPreviousNextPageGroup"

value="false" />

VisiblePages Determines the amount of displayed page links

in one group.

<key name="VisiblePages"

value="5" />

<options> (<GridOptions>):

This element is used to define additional settings and special features of the UniGrid control. You can either add

the settings as child <key> elements in the XML configuration file, or as attributes of the <GridOptions>

element when defined directly in the code. The following are available:

 UniGrid

29

Key name Description Sample Value

DisplayFilter Indicates whether a filter should be displayed

above the UniGrid. If the amount of displayed

rows is lower than the value of the FilterLimit

key, the filter will be hidden despite this setting.

<key name="DisplayFilter"

value="true" />

FilterLimit Determines the minimum amount of rows that

must be displayed in the UniGrid before a filter is

shown. The default value is read from the

CMSDefaultListingFilterLimit web.config key.

<key name="FilterLimit"

value="10" />

ShowSelection Indicates whether a column allowing the

selection of rows should be displayed on the left

of the UniGrid. This can be used to perform mass

actions affecting multiple rows.

The selected rows can be accessed through the

SelectedItems property of the UniGrid.

<key name="ShowSelection"

value="true" />

SelectionColumn Name of the column used as an item in the array

of selected rows which can be accessed through

the SelectedItems property of the UniGrid. By

default the first column in the data source is used.

<key name="SelectionColumn"

value="SiteName" />

ShowSortDirection Determines if an arrow showing the sorting

direction should be displayed next to the header

of the column used for sorting.

<key name="ShowSortDirection"

value="false" />

About Ray Business Technologies

Ray Business Technologies is a leading Global Information Technology (IT) Services and Solutions, a

CMMI Level 3, ISO 27001:2013 and ISO 9001:2015 Certified Company. We are a Member of NASSCOM,

HYSEA, NJTC, and AIIA. Ray Business Technologies offers comprehensive end-to-end IT Services for

Business Application Development, Enterprise Solutions, Enterprise Collaboration Services, Testing and

Quality Assurance Services, Cloud Computing and IT Infrastructure Management to organizations in the

Banking & Finance, Insurance, Healthcare, Manufacturing, Retail, Media & Entertainment, Leisure &

Travel, Telecom and Energy & Utilities verticals as well as Independent Software Vendors.

	<actions> (<GridActions>):
	<action> (<ug:Action>):
	<separator> (<ug:ActionSeparator>):

	<columns> (<GridColumns>):
	<column> (<ug:Column>):

	<objecttype>:
	<query>:
	<parameter>:

	<pager> (<PagerConfig>):
	<options> (<GridOptions>):

